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A problem of determining the form assumed by the free surface of a perfect fluid 
of infinite depth during the motion of a submerged ellipsoid of revolution is con- 
sidered. 

A problem of this kind (for the case of a moving pressure impulse) was first 

solved by Kelvin Cl]. However in view of the computational difficulties arising, 
the asymptotic values for the wave ordinates at large distances from the source 
of perturbations p - 51 were the only ones obtained up to the present time. 

The method presented below makes possible the computation of the exact (in 
the linear formulation) values of the ordinates of the free surface during the mo- 
tion of an ellipsoid of revolution with a large aspect ratio, with very moderate 
consumption of the computer time. The results obtained may find application 
in the theoretical problems of ship-building, hydrotechnology, etc. 

1. Assuming the liquid perfect and the waves appearing at the free surface small, we 
shall solve the problem using the method of singularities. Then the velocity potential 
resulting from the linear steady motion of the ellipsoid moving at velocity v can be 
written in the form [6] 

Here q,, is the potential of a unit source satisfying the following boundary conditions 
at the free surface 
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and the corresponding conditions at infinity, and Q denotes the intensity of the equiva- 
lent singularities determined from the condition of zero flow across the surface S of the 

ellipsoid. 
Following [6] we assume that the intensity Q is equal, in its first approximation, to 

that occurring during the motion of the ellipsoid in an unbounded fluid. (Of course, the 
error decreases with increasing both the depth of immersion of the ellipsoid and its aspect 
ratio). As we know p], the flow about the ellipsoid of revolution is in this case equiva- 
lent to a flow about the sources and sinks distributed continuously between its foci. In- 
deed, using the cylindrical 2, PO, 6 coordinates in the expression for the potential of 
an ellipsoid of revolution moving along the z -axis [l] we can obtain 
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l-1 L [(z + I)’ + p()+ 1 r$ = [(a: - 1)2 + poq”* 

where 1 is the distance between the foci and the coordinate origin. This expression re- 
presents the result of integrating the potential of elementary sources distributed along 
the z -axis the intensity of which varies according to the linear law 

Thus under the above assumptions our problem can be solved by inserting the potent- 
ial of the source situated near the free surface and satisfying the boundary condition (1.2). 

into the right-hand side of (1.3). 

2, The corresponding expression for the potential of a unit source situated at the point 
(0. 0, zr) of the moving coordinate system can be obtained by performing a passage to 
the limit as t -t M in the problem with initial conditions [3]. Then we have 
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c: 

r = 1x2 + 3 + (z - zpp, r’ = [ 52 + y” + (z + z1)2]-“2 (2.1) 

The contour C passes along the real axis from 9 = - rr to 0 = a~ and, in accordance 
with the condition that no waves are present at large distances in front of the ellipsoid, 
it is indented about the singularities El = t I/arccos (v / n) from below when 0 > 0 and 
from above when 3 < 0 

The singularity appearing in the denominator of the inner integral of (2.1) complicates 

the computations appreciably. It may however be removed by transforming the contour 
C into a closed one by means of the variable substitution 0 = .?. Then. after calcula- 

ting the corresponding residues, we set k i v = i - ta for k < v and k / v = i f tZ for 

k > Y to obtain 
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where Jzm is the B&se1 function of the first kind and all coordinates refer to v-1. 
The above expression for the potential has the following shortcomings. When the val- 

ues of 1 z -I- ~1 1 are small, the improper integrals converge slowly. Also, when p are 
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large, a considerable number of summation terms must be computed. For such values 
of coordinates it is more convenient to perform the integration in (2.1) along the imag- 

inary axis [8] to obtain 
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3, Let us insert the expressions obtained into (1.3). The following expression can be 
obtained for the ordinates Z& of the free surface: 

Here q*(z) represents a sum of integrals analogous to (2.2). The last improper integral 
in (2.2) can for example be reduced, after the integration, to the form 

2co e(1+tr)(r+z3 i ((- l)m vifsin [(2/n + i) arctg t] -t) X 
s 
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x J*+, [P (1 + t”)J cos (2m + 1) 11, $& 

This reduces the volume of the computations appreciably, as both types of integrals (fnr 
‘p and for cp*) can be computed concurrently. 

Computations were performed on a digital computer for an ellipsoid with the aspect 
ratio of 8 for V= 0.4 1/2x and for various depths of immersion 1 z1 1 > 0.3!W1. 

Fig. 1. 

For t& two points satisfying the condition x1 = xa + 21 we have cp(zr - I) -tp (z*+Z), 
therefore for each value of Y and z1 a table of values of cp is held in the computer 
memory and a relevant selection made from it in order to calculate the right-hand side 
of the first relation of (3.1). The necessary values of cp* were obtained in a similar 
manner and the expression (2.2) was used for 1x1 < 2.5~‘~ while (2.3) was employed 
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In the case of large 1~1 + 
Figure 1 illustrates. as an example, a section of the free surface for Ys u / 1 = 0.25 

and 0,375, Computation of ane such curve did not, as a rule, require more than 10 

Fig. 2. 
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minutes. Figure 2 shows a general shape of the free surface obtained by computing the 

wave profile along nine arbitrary sections. It shows the contour lines spaced at O.o4v-1 
intervals and we see from it that the wave pattern behind a moving ellipsoid is much 

more complex than one would expect from the asymptotic theory. 
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The onset of convection in a layer of an incompressible fluid with free bounda- 
ries is considered. The temperature at the layer boundaries, the density of the 
internal heat sources and the strength of the gravity field are all assumed to be 

T -periodic. The existence of the critical Rayleigh number and the T -period- 
icity of the neutral perturbation are proved for the case when the unperturbed 
temperature gradient is negative throughout the layer. These results are obtained 
by reducing the linearized problem to an ordinary differential equation in certain 
Banach space and applying the theory of the linear positive operators [ll. 

The onset of convection under the action of time-periodic forces is dealt with 
in & - 91. The stability of equilibrium of a horizontal layer with free and rigid 
boundaries was investigated and numerical methods were used to determine the 


